- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bansal, Mohit (2)
-
Raffel, Colin (2)
-
Tam, Derek (2)
-
Yang, Diyi (2)
-
Abid, Abubakar (1)
-
Agarwal, Akshat (1)
-
Agha, Omar (1)
-
Alabi, Jesujoba (1)
-
Ali, Tariq (1)
-
Alipoormolabashi, Pegah (1)
-
Aminnaseri, Moin (1)
-
Anand, Sajant (1)
-
Andreassen, Anders Johan (1)
-
Arakawa, Riku (1)
-
Argueta, Cedrick (1)
-
Arnaud, Melody (1)
-
Asaadi, Shima (1)
-
Ashcraft, Courtney (1)
-
Askell, Amanda (1)
-
Bahri, Yasaman (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract NLP has achieved great progress in the past decade through the use of neural models and large labeled datasets. The dependence on abundant data prevents NLP models from being applied to low-resource settings or novel tasks where significant time, money, or expertise is required to label massive amounts of textual data. Recently, data augmentation methods have been explored as a means of improving data efficiency in NLP. To date, there has been no systematic empirical overview of data augmentation for NLP in the limited labeled data setting, making it difficult to understand which methods work in which settings. In this paper, we provide an empirical survey of recent progress on data augmentation for NLP in the limited labeled data setting, summarizing the landscape of methods (including token-level augmentations, sentence-level augmentations, adversarial augmentations, and hidden-space augmentations) and carrying out experiments on 11 datasets covering topics/news classification, inference tasks, paraphrasing tasks, and single-sentence tasks. Based on the results, we draw several conclusions to help practitioners choose appropriate augmentations in different settings and discuss the current challenges and future directions for limited data learning in NLP.more » « less
-
Srivastava, Aarohi; Rastogi, Abhinav; Rao, Abhishek; Shoeb, Abu Awal; Abid, Abubakar; Fisch, Adam; Brown, Adam R.; Santoro, Adam; Gupta, Aditya; Garriga-Alonso, Adri; et al (, Transactions on machine learning research)
An official website of the United States government

Full Text Available